Chemistry 3830

Noble Gases

Properties of Noble Gases

Element	Electronic structure	mp, °C	E _{ea} , kJ mol ⁻¹	$E_{i,1}$, kJ mol ⁻¹	Electronegativity	van der Waals radius, pm
He	$1s^2$	-272	-48	2373	5.5	143
Ne	[He] $2s^2 2p^6$	-249	-116	2080	5.1	160
Ar	[Ne] $3s^2 3p^6$	-189	-96	1520	3.3	190
Kr	$[Ar] 3d^{10} 4s^2 4p^6$	-157	-96	1351	3.1	200
Xe	[Kr] $4d^{10}5s^25p^6$	-112	-77	1170	2.4	220
Rn	[Xe] $4f^{14} 5d^{10} 6s^2 6p^6$	-71	?	1036	?	230

Composition of Air

Selected components of air in order of increasing b.p.		
	boiling point, °C	percent abundance
He	-269	5.24×10^{-4}
Ne	-246	1.818×10^{-3}
N_2	-196	78.085
Ar	-186	0.934
O_2	-183	20.948
Kr	-153	1.14×10^{-4}
Xe	-108	8.7×10^{-6}

Liquefaction of Air/ Linde Process

- Fractional distillation of liquefied air
 - Air is compressed and cooled. Adiabatic expansion will cool air further
 - Major products: liquid nitrogen and oxygen

Selected components of all in order of increasing 0.p.		
	boiling point, °C	percent abundance
He	-269	5.24×10 ⁻⁴
Ne	-246	1.818×10^{-3}
N_2	-196	78.085
Ar	-186	0.934
O_2	-183	20.948
Kr	-153	1.14×10^{-4}
Xe	-108	8.7×10^{-6}

Selected components of air in order of increasing b.p.

Helium cannot be produced by the Linde Process

Helium

- <u>Need</u>: Liquid helium is necessary to cool magnets for NMR and MRI
 - Party balloons

Source:

- Helium is present in some natural gases: 0.2 7 vol%
 - In the past: He was obtained from American natural gas wells
 - But, the American He-rich natural gas wells are declining
 - Helium prices have gone up in the last 10 years.
 - New He-rich wells have been found in Arabia (Qatar) and Africa (Tanzania)
 - World-largest He plant: in Qatar
- He is non-renewable, therefore, it should be recovered if possible

Discovery of Noble Gas Compounds

In 1962: Neil Bartlett at UBC discovered noble gas reactivity

O_2 + $PtF_6 \rightarrow O_2^+PtF_6^-$

- Ionization potential of O₂: 12.2 eV
- Ionization potential of Xe: 12.13 eV

Xe +
$$PtF_6 \rightarrow "Xe^+PtF_6^-"$$

Discovery of Noble Gas Compounds

Xenon Fluorides

In 1962, Hoppe (from Germany) reported the synthesis of XeF₂

 $\begin{array}{l} XeF_2, \Delta_{\rm f}H = -164 \ \rm kJ/mol \\ XeF_4, \Delta_{\rm f}H = -284 \ \rm kJ/mol \\ XeF_6, \Delta_{\rm f}H = -361 \ \rm kJ/mol \end{array}$

exothermic

Synthetic approaches:

 $\begin{array}{rcl} Xe_{(g)} \ + \ F_{2(g)} \ \rightarrow \ XeF_2 \ (400^{\circ}C, \ 1 \ atm, \ xenon \ in \ excess) \\ \\ Xe_{(g)} \ + \ 2F_{2(g)} \ \rightarrow \ XeF_4 \ (600^{\circ}C, \ 6 \ atm, \ Xe: \ F_2 = 1:5) \\ \\ Xe_{(g)} \ + \ 3F_{2(g)} \ \rightarrow \ XeF_6 \ (300^{\circ}C, \ 60 \ atm, \ Xe: \ F_2 = 1:20) \end{array}$

XeF₈?

Xenon Fluorides

FIG. 15. Pressure and temperature influence on XeF₂, XeF₄, and XeF₆ formation

(a)
Equilibrium pressures of xenon fluorides as a function of temperature.
Initial conditions: 125 mmoles Xe, 275 mmoles F₂ per 1000 ml.

(b) Equilibrium pressures of xenon fluorides as a function of temperature. Initial conditions: 125 mmoles Xe, 1225 mmoles F₂ per 1000 ml.

Bonding in Xenon Fluorides

VB

MO

Bonding in Xenon Fluorides

3-centre-4-electron bonding

Structure of XeF₆

Structure: what does it mean?

- In the solid
- In the gas phase
- In the liquid
- In solutions (different solvents?)

Structure of Gaseous XeF₆

In the gas-phase:

- <u>Monomeric XeF₆:</u>
- Stereochemically active lone pair!
- Non-octahedral
- Fluxional; lone pair going from one face to the next

Characterization methods:

- Vibrational spectroscopy
- NMR spectroscopy
- Gas-phase electron diffraction
- Computational chemistry

Time Scales of Characterization Tools

EPR	10 ⁻⁶ s	
NMR	10 ⁻³ to 10 ⁻⁶ s	
IR/Raman	10 ⁻¹² s	
UV/visible	10 ⁻¹⁵ s	
Mössbauer	10 ⁻¹⁸ s	
X-ray Diffraction	10 ⁻¹⁸ s	Careful: special averaging!

Structure of Solid XeF₆

Different modifications (different packing and/or different structural units)

modification	structural units	method of crystallization
$XeF_6(mP32)$	tetramers, $(XeF_5^+F^-)_3 XeF_6$	sublimation at 30°C
$XeF_6(mC32)$	tetramers, $(XeF_5^+F^-)_3 XeF_6$	rapid sublimation above room temperature
$XeF_6(mP8)$	tetramers????	crystallization from melt
$XeF_6(cF144)$	tetramers, $(XeF_5^+F^-)_4$	maintaining sample at 4-18 °C
	and hexamers $(XeF_5^+F^-)_6$	
$XeF_6(mP16)$	tetramers $(XeF_5^+F^-)_4$	crystallization form solution at -40 to -18° C
$XeF_6(oP16)$	hexamers $(XeF_5^+F^-)_6$	low-temperature sublimation

Structure of Solid XeF₆

Different modifications (different packing and/or different structural units)

modification	structural units	method of crystallization
$XeF_6(mP32)$	tetramers, $(XeF_5^+F^-)_3 XeF_6$	sublimation at 30°C
$XeF_6(mC32)$	tetramers, $(XeF_5^+F^-)_3 XeF_6$	rapid sublimation above room temperature
$XeF_6(mP8)$	tetramers????	crystallization from melt
$XeF_6(cF144)$	tetramers, $(XeF_5^+F^-)_4$	maintaining sample at 4-18 °C
	and hexamers $(XeF_5^+F^-)_6$	
$XeF_6(mP16)$	tetramers $(XeF_5^+F^-)_4$	crystallization form solution at -40 to -18° C
$XeF_6(oP16)$	hexamers $(XeF_5^+F^-)_6$	low-temperature sublimation

Characterization methods:

- X-ray crystallography
- Vibrational spectroscopy
- Solid-state NMR spectroscopy
- Computational chemistry (not for packing!!!)

Structure of XeF₆ in Solution

Structure of XeF₆ in Solution

• Five different isotopologues with abundances:

Xe₄F₂₄ (0.7356)⁴ = 29.28%

 129 XeXe₃F₂₄ 4(0.2644)(0.7356)³ = 42.10%

 129 Xe₂Xe₂F₂₄ 6(0.2644)²(0.7356)² = 22.70 %

 129 Xe₃XeF₂₄ 4(0.7356)(0.2644)³ = 5.439 %

 129 Xe₄F₂₄ (0.2644)⁴ = 0.4887 %

Sum of abundances = 100 %